31 research outputs found

    Scalar Field Dark Energy Perturbations and their Scale Dependence

    Full text link
    We estimate the amplitude of perturbation in dark energy at different length scales for a quintessence model with an exponential potential. It is shown that on length scales much smaller than hubble radius, perturbation in dark energy is negligible in comparison to that in in dark matter. However, on scales comparable to the hubble radius (λp>1000Mpc\lambda_{p}>1000\mathrm{Mpc}) the perturbation in dark energy in general cannot be neglected. As compared to the Λ\LambdaCDM model, large scale matter power spectrum is suppressed in a generic quintessence dark energy model. We show that on scales λp<1000Mpc\lambda_{p} < 1000\mathrm{Mpc}, this suppression is primarily due to different background evolution compared to Λ\LambdaCDM model. However, on much larger scales perturbation in dark energy can effect matter power spectrum significantly. Hence this analysis can act as a discriminator between Λ\LambdaCDM model and other generic dark energy models with wde1w_{de} \neq -1.Comment: 12 pages, 13 figures, added new section, accepted for publication in Phys. Rev.

    Observational constraints on low redshift evolution of dark energy: How consistent are different observations?

    Full text link
    The dark energy component of the universe is often interpreted either in terms of a cosmological constant or as a scalar field. A generic feature of the scalar field models is that the equation of state parameter w= P/rho for the dark energy need not satisfy w=-1 and, in general, it can be a function of time. Using the Markov chain Monte Carlo method we perform a critical analysis of the cosmological parameter space, allowing for a varying w. We use constraints on w(z) from the observations of high redshift supernovae (SN), the WMAP observations of CMB anisotropies and abundance of rich clusters of galaxies. For models with a constant w, the LCDM model is allowed with a probability of about 6% by the SN observations while it is allowed with a probability of 98.9% by WMAP observations. The LCDM model is allowed even within the context of models with variable w: WMAP observations allow it with a probability of 99.1% whereas SN data allows it with 23% probability. The SN data, on its own, favors phantom like equation of state (w<-1) and high values for Omega_NR. It does not distinguish between constant w (with w<-1) models and those with varying w(z) in a statistically significant manner. The SN data allows a very wide range for variation of dark energy density, e.g., a variation by factor ten in the dark energy density between z=0 and z=1 is allowed at 95% confidence level. WMAP observations provide a better constraint and the corresponding allowed variation is less than a factor of three. Allowing for variation in w has an impact on the values for other cosmological parameters in that the allowed range often becomes larger. (Abridged)Comment: 21 pages, PRD format (Revtex 4), postscript figures. minor corrections to improve clarity; references, acknowledgement adde

    Vacuum Fluctuations of Energy Density can lead to the observed Cosmological Constant

    Full text link
    The energy density associated with Planck length is ρuvLP4\rho_{uv}\propto L_P^{-4} while the energy density associated with the Hubble length is ρirLH4\rho_{ir}\propto L_H^{-4} where LH=1/HL_H=1/H. The observed value of the dark energy density is quite different from {\it either} of these and is close to the geometric mean of the two: ρvacρuvρir\rho_{vac}\simeq \sqrt{\rho_{uv} \rho_{ir}}. It is argued that classical gravity is actually a probe of the vacuum {\it fluctuations} of energy density, rather than the energy density itself. While the globally defined ground state, being an eigenstate of Hamiltonian, will not have any fluctuations, the ground state energy in the finite region of space bounded by the cosmic horizon will exhibit fluctuations Δρvac(LP,LH)\Delta\rho_{\rm vac}(L_P, L_H). When used as a source of gravity, this Δρ\Delta \rho should lead to a spacetime with a horizon size LHL_H. This bootstrapping condition leads naturally to an effective dark energy density Δρ(LuvLH)2H2/G\Delta\rho\propto (L_{uv}L_H)^{-2}\propto H^2/G which is precisely the observed value. The model requires, either (i) a stochastic fluctuations of vacuum energy which is correlated over about a Hubble time or (ii) a semi- anthropic interpretation. The implications are discussed.Comment: r pages; revtex; comments welcom

    Evolution of perturbations in distinct classes of canonical scalar field models of dark energy

    Full text link
    Dark energy must cluster in order to be consistent with the equivalence principle. The background evolution can be effectively modelled by either a scalar field or by a barotropic fluid.The fluid model can be used to emulate perturbations in a scalar field model of dark energy, though this model breaks down at large scales. In this paper we study evolution of dark energy perturbations in canonical scalar field models: the classes of thawing and freezing models.The dark energy equation of state evolves differently in these classes.In freezing models, the equation of state deviates from that of a cosmological constant at early times.For thawing models, the dark energy equation of state remains near that of the cosmological constant at early times and begins to deviate from it only at late times.Since the dark energy equation of state evolves differently in these classes,the dark energy perturbations too evolve differently. In freezing models, since the equation of state deviates from that of a cosmological constant at early times, there is a significant difference in evolution of matter perturbations from those in the cosmological constant model.In comparison, matter perturbations in thawing models differ from the cosmological constant only at late times. This difference provides an additional handle to distinguish between these classes of models and this difference should manifest itself in the ISW effect.Comment: 11 pages, 6 figures, accepted for publication in Phys. Rev.

    Different faces of the phantom

    Full text link
    The SNe type Ia data admit that the Universe today may be dominated by some exotic matter with negative pressure violating all energy conditions. Such exotic matter is called {\it phantom matter} due to the anomalies connected with violation of the energy conditions. If a phantom matter dominates the matter content of the universe, it can develop a singularity in a finite future proper time. Here we show that, under certain conditions, the evolution of perturbations of this matter may lead to avoidance of this future singularity (the Big Rip). At the same time, we show that local concentrations of a phantom field may form, among other regular configurations, black holes with asymptotically flat static regions, separated by an event horizon from an expanding, singularity-free, asymptotically de Sitter universe.Comment: 6 pages, presented at IRGAC 2006, Barcelona, 11-15 July 200

    Initial state of matter fields and trans-Planckian physics: Can CMB observations disentangle the two?

    Full text link
    The standard, scale-invariant, inflationary perturbation spectrum will be modified if the effects of trans-Planckian physics are incorporated into the dynamics of the matter field in a phenomenological manner, say, by the modification of the dispersion relation. The spectrum also changes if we retain the standard dynamics but modify the initial quantum state of the matter field. We show that, given {\it any} spectrum of perturbations, it is possible to choose a class of initial quantum states which can exactly reproduce this spectrum with the standard dynamics. We provide an explicit construction of the quantum state which will produce the given spectrum. We find that the various modified spectra that have been recently obtained from `trans-Planckian considerations' can be constructed from suitable squeezed states above the Bunch-Davies vacuum in the standard theory. Hence, the CMB observations can, at most, be useful in determining the initial state of the matter field in the standard theory, but it can {\it not} help us to discriminate between the various Planck scale models of matter fields. We study the problem in the Schrodinger picture, clarify various conceptual issues and determine the criterion for negligible back reaction due to modified initial conditions.Comment: revtex4; 17 page

    Observational constraints on the dark energy density evolution

    Full text link
    We constrain the evolution of the dark energy density from Cosmic Microwave Background, Large Scale Structure and Supernovae Ia measurements. While Supernovae Ia are most sensitive to the equation of state w0w_0 of dark energy today, the Cosmic Microwave Background and Large Scale Structure data best constrains the dark energy evolution at earlier times. For the parametrization used in our models, we find w0<0.8w_0 < -0.8 and the dark energy fraction at very high redshift Ωearly<0.03\Omega_{early} < 0.03 at 95 per cent confidence level.Comment: 5 pages, 10 figure

    Dark Energy and Gravity

    Full text link
    I review the problem of dark energy focusing on the cosmological constant as the candidate and discuss its implications for the nature of gravity. Part 1 briefly overviews the currently popular `concordance cosmology' and summarises the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as the candidate and emphasises why no other approach really solves the conceptual problems usually attributed to the cosmological constant. Part 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract the key ingredients which must be present in any viable solution. I argue that (i)the cosmological constant problem cannot be satisfactorily solved until gravitational action is made invariant under the shift of the matter lagrangian by a constant and (ii) this cannot happen if the metric is the dynamical variable. Hence the cosmological constant problem essentially has to do with our (mis)understanding of the nature of gravity. Part 3 discusses an alternative perspective on gravity in which the action is explicitly invariant under the above transformation. Extremizing this action leads to an equation determining the background geometry which gives Einstein's theory at the lowest order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy, edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure

    Legacy data and cosmological constraints from the angular-size/redshift relation for ultra-compact radio sources

    Get PDF
    We have re-examined an ancient VLBI survey of ultra-comact radio sources at 2.29 GHz, which gave fringe amplitudes for 917 such objects with total flux density >0.5 Jy approximately. A number of cosmological investigations based upon this survey have been published in recent years. We have updated the sample with respect to both redshift and radio information, and now have full data for 613 objects, significantly larger than the number (337) used in earlier investigations. The corresponding angular-size/redshift diagram gives Omega_m=0.25+0.04/-0.03, Omega_\Lambda=0.97+0.09/-0.13 and K=0.22+0.07/-0.10. In combination with supernova data, and a simple-minded approach to CMB data based upon the angular size of the acoustic horizon, our best figures are Omega_m=0.298+0.025/-0.024, Omega_\Lambda=0.702+0.035/-0.036 and K= 0.000+0.021/-0.019. We have examined simple models of dynamical vacuum energy; the first, based upon a scalar potential V(phi)=omega_C^2 phi^2/2, gives w(0)=-1.00+0.06/-0.00, (dw/dz)_0=+0.00/-0.08; in this case conditions at z=0 require particular attention, to preclude behaviour in which phi becomes singular as z -->infinity. For fixed w limits are w=-1.20+0.15/-0.14. The above error bars are 68% confidence limits.Comment: 24 pages, 9 figure

    Bayesian analysis of Friedmannless cosmologies

    Full text link
    Assuming only a homogeneous and isotropic universe and using both the 'Gold' Supernova Type Ia sample of Riess et al. and the results from the Supernova Legacy Survey, we calculate the Bayesian evidence of a range of different parameterizations of the deceleration parameter. We consider both spatially flat and curved models. Our results show that although there is strong evidence in the data for an accelerating universe, there is little evidence that the deceleration parameter varies with redshift.Comment: 7 pages, 3 figure
    corecore